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Abstract. Magnetic moment and radius of the nucleon are calculated in a nonlocal extension of the chiral
linear σ-model. Properties of the nonlocal model under the vector and axial transformations are con-
sidered. The conserved electromagnetic and vector currents, and partially conserved axial vector current
are obtained. In the calculation of the nucleon electromagnetic vertex the π- and σ-loop diagrams are
included. Contribution from vector mesons is added in the vector meson dominance model with a gauge-
invariant photon-meson coupling. The nonlocality parameter associated with the πN interaction is fixed
from the experimental magnetic moment of the neutron. Other parameters (nonlocality parameter for the
σN interaction and the mass of the σ-meson) are constrained by the magnetic moment of the proton. The
calculated electric and magnetic mean-square radii of the proton and neutron are in satisfactory agreement
with experiment.

PACS. 13.40.-f Electromagnetic processes and properties – 13.40.Em Electric and magnetic moments –
14.20.Dh Protons and neutrons – 11.10.Lm Nonlinear or nonlocal theories and models

1 Introduction

The calculation of the nucleon magnetic moment has a
long story. In the fifties Fried [1] calculated pion-loop con-
tribution to the electromagnetic (EM) form factors of the
neutron. The authors of [2] pointed out to the importance
of the Ward-Takahashi (WT) identity as a requirement
for any model for the γNN vertex. Recoil corrections to
the fixed-source static model [3] were calculated in [2] in
a model with an extended pion-nucleon interaction and
pseudo-vector (PV) coupling. However agreement between
the theory and experimental values of the magnetic mo-
ments of the proton (µp) and neutron (µn) was poor.

The authors of [4,5] evaluated the anomalous mag-
netic moments (AMM)s of the proton, κp = µp − 1, and
the neutron, κn = µn, while studying the γNN vertex
of the off-mass-shell (bound) nucleon. Naus and Koch [4]
calculated the off-shell EM form factors in the pion-loop
approximation using the pseudo-scalar (PS) πN interac-
tion. The off-shell effects were shown to be appreciable,
although the calculated AMMs, κp = 0.51, κn = −3.7,
did not agree with the experimental values κexp

p ≈ 1.793
and κexp

n ≈ −1.913, see1. A more refined approach based
on the vector meson dominance (VMD) was applied in [5].

a e-mail: alex korchin@rbcmail.ru
1 Anomalous magnetic moments are given hereafter in units

of nuclear magneton e�/2mNc.

The pion-loop contribution and the πNN form factors
were included. To account for the gauge invariance of the
γNN vertex, the authors used a recipe from ref. [6]. It
was shown [5] that the VMD vertex supplemented with
the pion-loop contribution leads to a better description
of AMMs, viz. κp = 1.9, κn = −2.26 for the PS, and
κp = 1.74, κn = −2.08 for the PV πN coupling. In a dy-
namical model [7] the effects of the ∆-resonance and VMD
were investigated in both the space-like and time-like re-
gions of the photon momentum. An extended version of
the VMD model was applied, which lead to results differ-
ent from the conventional VMD model used in [5]. The
calculated AMMs were κp = 1.45 and κn = −1.65. Re-
cently a nonperturbative approach for the γNN vertex
has been developed in [8], where the infinite number of
the pion loops was included. The magnetic form factor at
the photon point was normalized to experiment.

In ref. [9] the chiral linear σ-model [10] has been ap-
plied in calculation of the AMM of the proton. Among
other results it has been shown that the proton AMM can
be reproduced with a heavy σ-meson (mσ ≈ 800 MeV).
As follows from our calculation (sect. 4, below) the neu-
tron AMM turns out to be far off the experimental value.
Thus, it does not seem possible to describe simultaneously
the proton and neutron AMMs in the linear σ-model, at
least on the one-loop level.

In the present paper, we develop a nonlocal exten-
sion of the linear σ-model, and apply it in calculation
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of the EM properties of the proton and neutron. We as-
sume that the πN (σN) interaction is governed by the
form function Hπ(x′ − x, x′′ − x) (Hσ(x′ − x, x′′ − x)),
where the space-time coordinates x′, x′′ stand for the nu-
cleon, and x for the meson. The nucleon mass is as usual
generated through a nonzero vacuum expectation value
of the σ-field, this leads to a constrained form function
Hσ(x′−x, x′′−x) = δ4(x′−x′′)hσ(x′−x). A similar form is
used for the πN function. The EM interaction in the model
is included by making use of the minimal substitution in
the so-called shift operators. This procedure generates, in
addition to the nucleon and pion EM vertices, a seagull-
like NNπγ term. Properties of the nonlocal model under
the SU(2) axial and vector transformations are also differ-
ent from properties of the local σ-model. We construct the
conserved vector current and partially conserved axial cur-
rent by applying the corresponding minimal substitutions
in the action. These currents get contributions from the
meson-nucleon interaction similarly to the EM current.

Further we calculate the γNN vertex in the covariant
perturbation theory in the pion- and sigma-loop approx-
imation. The cut-off in momentum space in the Fourier
transforms of the functions hπ,σ(x′ − x) ensures conver-
gence of the loop integrals. Consistency of the calculation
is verified by checking the WT identity. We concentrate
on the magnetic moments and mean-square radii (MSR)
of the proton and neutron and study contributions from
various diagrams. For reasonable values of the nonlocal-
ity parameters and the σ-meson mass we find agreement
between the calculation and experiment for AMMs. At
the same time the π- and σ-loop contributions turn out
to be insufficient to describe the observed MSRs. For this
reason the contributions coming from the vector mesons
are added in the version [7] of the VMD model. In this
version the photon couples to the vector mesons via a
gauge-invariant Lagrangian. Inclusion of the ρ- and ω-
mesons improves considerably description of the electric
and magnetic MSRs of the proton and neutron.

The paper is organized as follows. In sect. 2 the non-
local model is introduced. The conserved EM current is
constructed. Properties of the model with respect to the
axial and vector transformations are discussed and the
corresponding currents are obtained. In sect. 3 the nucleon
EM form factors are calculated in the one-loop approxi-
mation. Expressions for AMMs are derived. Lagrangian of
the vector mesons is specified and their contributions to
the EM form factors and MSRs are obtained. One impor-
tant aspect of renormalization of the EM form factors is
discussed. Results of the calculation of AMMs and MSRs,
and discussion are presented in sect. 4. Conclusions are
given in sect. 5. Appendix A contains equations of mo-
tion in the nonlocal model. The Ward-Takahashi identity
for the EM vertex is verified in Appendix B. Finally, Ap-
pendix C includes details of calculation of the loop inte-
grals and expressions for the EM form factors, MSRs and
the nucleon self-energy operator.

2 Description of the model

Let us consider the following action for the nucleon (N),
pion (	π), and sigma (φ) fields

S =
∫ {

N̄(x)i∂/N(x) +
1
2

(∂µ	π(x))2

+
1
2
(∂µφ(x))2 − V (φ, 	π)

}
dx + Sint , (1)

Sint = −g

∫
N̄(x′)[φ(x)Hσ(x′ − x, x′′ − x)

+iγ5	τ	π(x)Hπ(x′ − x, x′′ − x)]N(x′′)dxdx′dx′′ , (2)

where g is the coupling constant, dx = d4x, ∂µ = ∂/∂xµ,
∂/ = γµ∂µ and

V (φ, 	π) =
λ

4
[φ(x)2 + 	π(x)2 − ξ2]2 − cφ(x) (3)

is the meson potential. Equation (2) is a nonlocal ex-
tension of the meson-nucleon interaction in the chiral
SU(2)L ×SU(2)R linear σ-model with explicit symmetry-
breaking term cφ (see, e.g., [11], chapt. 11, sect. 11.4.1,
or [12], chapt. 5, sect. 2.6). The three-point form func-
tions Hπ,σ(x′ − x, x′′ − x) due to the translational in-
variance depend on the two four-vectors. After imposing
the Lorentz invariance, they become functions of s1 =
(x′ − x)2, s2 = (x′′ − x)2 and s12 = (x′ − x′′)2. In general,
Hπ,σ(x′ − x, x′′ − x) should fall off at |s1|, |s2|, |s12| → ∞
and have correct local limit. At this point, we refer to [13,
14] where different aspects of the nonlocal ψ̄ψφ model [15]
for the nucleon and neutral meson fields were considered.
A review of some nonlocal theories can be found in mono-
graphs [16].

In the same way as in the local model, we take φ(x) =
〈φ〉 + σ(x) and require the minimum of V (〈φ〉, 〈	π〉) to be
at 〈φ〉 = fπ and 〈	π〉 = 0, where fπ is the π+ → µ+νµ

weak-decay constant2. This gives ξ2 = f2
π −c/λfπ and the

action takes the form

S =
∫ {

N̄(x)(i∂/ − mN )N(x) +
1
2
[(∂µ	π(x))2 − m2

π]

+
1
2
[(∂µσ(x))2 − m2

σ] − V ′(σ, 	π)
}

dx + S′
int , (4)

V ′(σ, 	π) = λ[σ(x)2 + 	π(x)2]

×
{

fπσ(x) +
1
4
[σ(x)2 + 	π(x)2]

}
+ const , (5)

and S′
int is obtained from Sint in eq. (2) after replacing

φ(x) by σ(x). The masses of the pion, sigma and nucleon
are defined respectively by

m2
π =

c

fπ
, m2

σ = 2λf2
π +

c

fπ
, mN = gfπ Fσ , (6)

2 Its experimental value is fexp
π = 92.4(2) MeV [17].
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with a constant Fσ. In order to reproduce the nucleon
mass term, the following condition:

gfπ

∫
N̄(x′)N(x′′)Hσ(x′ − x, x′′ − x) dxdx′dx′′ =

mN

∫
N̄(x)N(x) dx , (7)

has been imposed. From eq. (7) one obtains the constraint∫
Hσ (x′ − x, x′′ − x) dx = δ4(x

′ − x′′)Fσ . (8)

We further introduce the Fourier transforms

Ĥπ,σ(p′, p′′) =∫
exp[−i(p′ · y′−p′′·y′′)] Hπ,σ(y′, y′′) dy

′dy′′ , (9)

with notation a · b ≡ aνbν . Then eqs. (8) and (9) lead
to the constraint in the momentum space Ĥσ(p, p) = Fσ

for any p. Hence Ĥσ(p′, p′′) should depend on p′ − p′′, or
Ĥσ(p′, p′′) = ĥσ(p′−p′′). We will also choose Ĥπ(p′, p′′) =
ĥπ(p′ − p′′) for the pion-nucleon interaction. In config-
uration space one has Hπ,σ(x′ − x, x′′ − x) = δ4(x′ −
x′′)hπ,σ(x′ − x), where

hπ,σ(y) = (2π)−4

∫
exp(ik · y)ĥπ,σ(k) d4k (10)

with ĥσ(0) = Fσ due to eq. (8). The normalization of the
form factors ĥπ,σ(k) at k = 0 is specified in subsect. 3.1.
The constrained form function hπ(x′ − x) or hσ(x′ − x)
describes an extended interaction between the meson and
the nucleon source, whereas due to δ4(x′ −x′′) there is no
internal coupling of the nucleon to itself.

The interaction (2) can be rewritten for convenience
as follows:

Sint = −g

∫
[φ(x) ρ̃S(x)+	π(x)	̃ρA(x)] dx , (11)

ρ̃S(x) =
∫

ρS(x′)hσ(x′ − x) dx′ ,

ρS(x′) = N̄(x′)N(x′) , (12)

	̃ρA(x) =
∫

	ρA(x′)hπ(x′ − x) dx′ ,

	ρA(x′) = N̄(x′)iγ5	τN(x′) . (13)

2.1 Electromagnetic current

In this subsection we discuss properties of the model under
the gauge U(1) transformation. Note first that variation
of the action (1) with Sint in eq. (11) under arbitrary in-
finitesimal variation of the fields leads to

δS =
∫

∂

∂xµ
[N̄(x)iγµδN(x)

+∂µφ(x)δφ(x) + ∂µ	π(x)δ	π(x)] dx , (14)

where equations of motion have been used (see Ap-
pendix A). Let us take the transformation

N → N − iε eQ̂pN , N̄ → N̄ + iε N̄eQ̂p ,

	π → 	π − iε eQ̂π	π , φ → φ , (15)

with the parameter ε. In eqs. (15) e is the proton charge,
Q̂p = 1

2 (1+τ3) and Q̂π = t3, where 	τ and 	t are the isospin
matrices for the nucleon and the pion, respectively. For
the constant ε the action is clearly invariant, i.e. δS = 0,
and therefore the following integral analogue of the current
conservation holds∫

∂

∂xµ
[Jµ

N,em(x) + Jµ
π,em(x)]dx = 0 , (16)

where the nucleon and the pion EM currents are de-
fined as Jµ

N,em(x) = eN̄(x)γµQ̂pN(x) and Jµ
π,em(x) =

−ie∂µ	πQ̂π	π = e(	π × ∂µ	π)3. Equation (16) is in line with
ref. [18] where integral conservation laws were studied for
a general nonlocal action, and with ref. [13] where the re-
lated issues were addressed, in particular construction of
the baryon charge and four-vector of the energy momen-
tum in framework of the nonlocal model [15].

Despite eq. (16), the current Jµ
N,em(x) + Jµ

π,em(x) is
not locally conserved, i.e., ∂µ[Jµ

N,em(x) + Jµ
π,em(x)] �= 0.

A conserved current can be constructed by making use of
the minimal substitution

∂µ
x → ∂µ

x + ieQ̂Aµ(x) , (17)

where Aµ(x) is the EM field, ∂µ
x = ∂/∂xµ and Q̂ = Q̂p or

Q̂π. The free nucleon and meson terms in the action (1)
give rise to the currents Jµ

N,em(x) and Jµ
π,em(x). In order

to apply eq. (17) to the interaction (11), we represent the
πN piece of Sint in the form

SπN = −g

∫ ∫
	π(x)	ρA(x + y)hπ(y) dxdy =

−g

∫ ∫
	π(x)[exp(y · ∂x)N(x)]†γ0iγ5	τ

×[exp(y · ∂x)N(x)]hπ(y) dxdy , (18)

where the “shift” operator exp(y · ∂x) acts on the nucleon
field as follows: exp(y · ∂x)N(x) = N(x + y). After substi-
tuting eq. (17) in eq. (18) one can use the identity

exp(O1 + O2) = P̄ exp

[ ∫ 1

0

O2(t) dt

]
exp(O1) , (19)

O2(t) = exp(O1t)O2 exp(−O1t) ,

for any operators O1 and O2, where P̄ exp[...] denotes
the exponential antiordered in the parameter t. Choosing
O1 = y · ∂x and O2 = ieQ̂py · A(x), one obtains

SπN → SπN{A} =

−g

∫ ∫
	π(x)N̄(x′)P exp[−ieχ(x′, x)] iγ5	τ

×P̄ exp[ieχ(x′, x)]N(x′) hπ(x′ − x) dxdx′ , (20)

χ(x′, x) = (x′ − x) ·
∫ 1

0

Q̂pA(x(1 − t) + x
′
t) dt
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with P exp[...] being the ordered in t exponential. The
modified interaction SπN{A} is invariant under the trans-
formations (15) with the x-dependent parameter ε(x), if
the EM field transforms as Aµ(x) → Aµ(x) + ∂µε(x). The
σN term does not give rise to the EM interaction.

We should note that eq. (20) gives the EM interaction
in all orders in charge. In the first order in e we obtain the
current by taking the functional derivative

Jµ
πN,em(x) = − δ

δAµ(x)
SπN{A}|A=0 =

−eg

∫ ∫
[	ρA(y) × 	π(z)]3 (y − z)µ

×
∫ 1

0

δ4(x − z(1 − t) − yt) dt hπ(y − z) dydz . (21)

Now direct calculation shows that the total EM current is
conserved, i.e.,

∂

∂xµ
[Jµ

N,em(x) + Jµ
π,em(x) + Jµ

πN,em(x)] = 0 . (22)

In case of the local πN interaction, hπ(y−z) → δ4(y−z),
the current Jµ

πN,em(x) vanishes.
One should keep in mind that there is an ambiguity

in the construction of the current Jµ
πN,em(x). Additional

gauge-invariant terms appear if the integral in eq. (20)
along the straight line

∫ 1

0

(x′ − x) · A(x(1 − t)+x′t) dt =
∫ x′

x

Aµ dlµ (23)

is replaced by the integral over an arbitrary contour con-
necting the points xν and x′ν . This was noticed long ago
by Bloch [19] when developing a nonlocal theory. Our fol-
lowing consideration is restricted to the straight-line inte-
gration.

Finally note that the minimal substitution in the shift
operator was applied earlier in [20,21]. In particular,
in [21] the EM current for the two nucleons in the Bethe-
Salpeter formalism was constructed; there also some ad-
ditional gauge-invariant contributions, proportional to the
EM tensor Fµν(x), were discussed.

2.2 Axial and vector currents

Properties of the model under the isospin transformation
with the parameters εa (a = 1, 2, 3),

N → N − i
	τ

2
	ε N , N̄ → N̄ + N̄ i

	τ

2
	ε ,

	π → 	π + 	ε × 	π , φ → φ (24)

are similar to the case considered in the previous subsec-
tion. It is easy to show from eq. (14) that the integral
conservation law∫

∂

∂xµ
[ 	Jµ

N,vec(x) + 	Jµ
π,vec(x)]dx = 0 (25)

is fulfilled, where 	Jµ
N,vec(x) = N̄(x)γµ �τ

2N(x) and
	Jµ
π,vec(x) = 	π(x) × ∂µ	π(x) are the conventional nucleon

and pion vector currents.
The axial SU(2) transformation in the nonlocal σ-

model is a more interesting case because the action is not
invariant under the transformation. Consider the following
variation of the fields:

N → N − iγ5
	τ

2
	ε N , N̄ → N̄ − N̄ iγ5

	τ

2
	ε ,

	π → 	π + 	εφ , φ → φ − 	ε 	π . (26)

For the constant parameters εa, it follows from eq. (14)
that

δS = 	ε

∫
∂

∂xµ
[ 	Jµ

N,ax(x) + 	Jµ
M,ax(x)]dx , (27)

where the nucleon and the meson axial currents
are 	Jµ

N,ax(x) = N̄(x)γµγ5
�τ
2N(x) and 	Jµ

M,ax(x) =
∂µ	π(x)φ(x) − ∂µφ(x)	π(x), respectively. The same vari-
ation δS can be calculated directly by making use of
δρS(x) = −	ε	ρA(x) and δ	ρA(x) = 	ερS(x). Then compari-
son of the result with eq. (27) yields the equation∫

∂

∂xµ
[ 	Jµ

N,ax(x) + 	Jµ
M,ax(x)] dx = −c

∫
	π(x)dx

+g

∫ ∫
[ρS(x′)	π(x) + 	ρA(x′)φ(x)]

×[hσ(x′ − x) − hπ(x′ − x)] dxdx′ . (28)

The first term on the r.h.s. of eq. (28) comes from the
symmetry-breaking term cφ leading to the finite pion
mass, while the second term is related to the difference
between the form functions for the σN and πN interac-
tions.

Note that eqs. (25) and (28) are the integral relations
from which the corresponding local relations do not fol-
low. In order to find the axial and vector currents satisfy-
ing the local relations let us use the following “minimal”
substitutions:

∂µN(x) →
{

∂µ + i
	τ

2
[γ5	a

µ(x) + 	ρ µ(x)]
}

N(x) ,

∂µ	π(x) → ∂µ	π(x) − φ(x)	aµ(x) + 	π(x) × 	ρ µ(x) ,

∂µφ(x) → ∂µφ(x) + 	π(x)	aµ(x) , (29)

where the axial vector field 	aµ(x) and the vector field
	ρ µ(x) are introduced. They transform according to
(see [12], chapt. 5, sect. 4.3)

	ρ µ → 	ρ µ + 	ε × 	ρ µ + ∂µ	ε , 	aµ → 	aµ + 	ε × 	aµ , (30)

under the isospin rotations, and

	ρ µ → 	ρ µ + 	ε × 	aµ , 	aµ → 	aµ + 	ε × 	ρ µ + ∂µ	ε , (31)

under the chiral rotations described by the x-dependent
parameters εa(x). The axial and vector currents can be
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obtained by taking the functional derivatives

	Jµ
ax(x) = − δ

δ	aµ(x)
S{a, ρ}|a=ρ=0 ,

	Jµ
vec(x) = − δ

δ	ρµ(x)
S{a, ρ}|a=ρ=0 . (32)

Applying eqs. (29) to the free nucleon and meson terms
in the action gives the axial current 	Jµ

N,ax(x) + 	Jµ
M,ax(x)

and the vector current 	Jµ
N,vec(x)+ 	Jµ

π,vec(x) defined above
after eqs. (27) and (25). Those coincide with the currents
in the local σ-model (see [11], chapt. 11, sect. 11.4.1). Ad-
ditional contributions arise from the nonlocal interaction.
Proceeding similarly to the derivation of the EM interac-
tion in subsect. 2.1, we obtain

Sint → Sint{a, ρ} = −g

∫ ∫
N̄(x′)

×P exp[−iϕ(x′, x) + iγ5ψ(x′, x)]

×{φ(x)hσ(x′ − x) + iγ5	τ	π(x)hπ(x′ − x)}
×P̄ exp[iϕ(x′, x) + iγ5ψ(x′, x)]N(x′) dxdx′ , (33)

ϕ(x′, x) =
1
2
(x′ − x) ·

∫ 1

0

	τ	ρ(x(1 − t) + x
′
t) dt ,

ψ(x′, x) =
1
2
(x′ − x) ·

∫ 1

0

	τ	a(x(1 − t) + x
′
t) dt .

It is straightforward now to obtain the currents from
eqs. (32) and (33). The axial vector current is

	Jµ
MN,ax(x) = −g

∫ ∫
[ρS(y)	π(z)hπ(y − z)

−	ρA(y)φ(z)hσ(y − z)](y − z)µ

×
∫ 1

0

δ4(x − z(1 − t) − yt) dt dydz , (34)

and the vector current is

	Jµ
πN,vec(x) = −g

∫ ∫
[	ρA(y) × 	π(z)](y − z)µ

×
∫ 1

0

δ4(x − z(1 − t) − yt) dt hπ(y − z) dydz . (35)

One can also show that∫
∂

∂xµ
	Jµ
MN,ax(x)dx =

∫
∂

∂xµ
	Jµ
πN,vec(x)dx = 0 , (36)

though the divergences of the currents do not vanish.
Equations (34) and (35) are sufficient to obtain the lo-
cally conserved vector current and partially conserved ax-
ial current that obey equations

∂

∂xµ
[ 	Jµ

N,vec(x) + 	Jµ
π,vec(x) + 	Jµ

πN,vec(x)] = 0 , (37)

∂

∂xµ
[ 	Jµ

N,ax(x) + 	Jµ
M,ax(x) + 	Jµ

MN,ax(x)] =

−c	π(x) + g

∫
[ρS(x′)	π(x)

+	ρA(x′)φ(x)][hσ(x′ − x) − hπ(x′ − x)]dx′ , (38)

where we can substitute φ(x) = fπ + σ(x) and c = fπm2
π.

If the form functions for the pion and sigma are equal
to each other, then the axial current satisfies the simpler
equation

∂

∂xµ
[ 	Jµ

N,ax(x) + 	Jµ
M,ax(x) + 	Jµ

MN,ax(x)] = −c	π(x) . (39)

Apparently the currents (34) and (35) vanish for the local
πN and σN interactions, i.e. if hπ(y − z) → δ4(y − z),
hσ(y − z) → δ4(y − z). In this case all equations of the
local σ-model are restored.

In general case, taking the matrix element of eq. (38)
at xµ = 0 between the one-pion state and the vacuum
leads, in the lowest order, to the PCAC relation

〈0|∂x · [Ja
N,ax(0) + Ja

M,ax(0) + Ja
MN,ax(0)]|πb(	q )〉 =

−cδab+g[ĥσ(0)−ĥπ(0)]〈0|ρS(0)|0〉δab =−fπm2
πδab , (40)

where the pion states are normalized as follows:
〈πa(	q ′)|πb(	q )〉 = (2π)32ωqδ

3(	q − 	q ′)δab with ω2
q = 	q 2 +

m2
π, and a, b = 1, 2, 3. The term in eq. (40) proportional to

g does not contribute because it involves the nucleon op-
erators. The zero vacuum expectation value of ρS(0) can
be ensured by choosing the normal ordering of the nucleon
operators in Sint. Besides, one can normalize the form fac-
tors so that ĥπ(0) = ĥσ(0). It is seen that on the level of
the matrix element the PCAC relation has the same form
as in the local σ-model [10]. On the operator level how-
ever there is an additional term in eq. (38) proportional
to the difference between the nonlocality functions for the
π- and σ-mesons.

The axial properties of the nucleon will be addressed
in detail elsewhere. Now we proceed to the calculation of
the nucleon EM vertex.

3 Magnetic moment and mean-square radius
of the nucleon

3.1 Pion- and sigma-loop contributions to the
electromagnetic vertex

To calculate the nucleon EM vertex we start with the 3-
point Green function

Gν(x2, x1; z) = 〈0|TN(x2)N̄(x1)Aν(z)|0〉 =

(2π)−8

∫
exp[i(p2x2 − p1x1 − qz)]

×δ4(p1 + q − p2)Gν(p2, p1; q) d4p1d4p2d4q , (41)

where T is the time-ordering operator. The Fourier trans-
form Gν(p2, p1; q) of the Green function is related to the
irreducible γNN vertex function Γµ(p2, p1; q) via

Gν(p2, p1; q) =
iS′(p2)[−ieΓµ(p2, p1; q)]iS′(p1)[−iD′

µν(q)] , (42)

where S′(p) (D′
µν(q)) is the nucleon (photon) dressed

propagator, and p2 = p1 + q. Next step is the evalua-
tion of the lowest-order contributions to Γµ(p2, p1; q) in
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Fig. 1. Electromagnetic vertex of the nucleon. The first row of diagrams shows the neutron vertex, the second row the proton
vertex (without the γµ term). Dashed lines depict the π-meson, dotted lines the σ-meson, wavy lines the photon, double-wavy
lines ω- and ρ-mesons, and solid lines the nucleon.

the perturbation theory. We take into account the pion-
and sigma-loop diagrams (see fig. 1 “a, b, c” and “d±”)
which include contributions of the order g2. The proton
and neutron vertex functions read

Γµ
p (p2, p1; q) = γµ − Γµ

a +
1
2
Γµ

b + Γµ
c + Γµ

d+ , (43)

Γµ
n (p2, p1; q) = Γµ

a + Γµ
b + Γµ

d− , (44)

where Γµ
a is the π-loop term with the photon coupled to

the pion, Γµ
b (Γµ

c ) is the π-loop (σ-loop) term with the
photon attached to the proton:

Γµ
a = C

∫
∆π(k)∆π(k − q)(2k − q)µĥπ(k)γ5

×S(p2 − k)γ5ĥπ(q − k) d4k , (45)

Γµ
b = −C

∫
∆π(k)ĥπ(k)γ5S(p2 − k)γµ

×S(p1 − k)γ5ĥπ(−k) d4k , (46)

Γµ
c =

1
2
C

∫
∆σ(k)ĥσ(k)S(p2 − k)γµ

×S(p1 − k)ĥσ(−k) d4k , (47)

∆π,σ(k) = (k2 −m2
π,σ + i0)−1 (S(p) = (p/−mN + i0)−1) is

the free meson (nucleon) propagator with physical value
of the meson (nucleon) mass, and C ≡ 2ig2(2π)−4. The
contributions coming from Jµ

πN,em in eq. (21) are

Γµ
d+ = −Γµ

d− =

C

∫
∆π(k)

{∫ 1

0

∂

∂kµ
ĥπ(qt + k)dtγ5S(p1 − k)γ5ĥπ(−k)

+ĥπ(k)γ5S(p2 − k)γ5

∫ 1

0

∂

∂kµ
ĥπ(qt − k)dt

}
d4k . (48)

The term Γµ
d+ (Γµ

d−) corresponds to the π+ (π−) in the
intermediate state for the proton (neutron) vertex. Gauge
invariance of the γpp and γnn vertices is verified in Ap-
pendix B.

The analytical form of the nonlocal form factors is cho-
sen as follows:

ĥπ,σ(k) =
λ2

π,σ

λ2
π,σ − k2 , (49)

where λπ and λσ are the cut-off momenta. The func-
tions ĥπ,σ(k) are normalized to unity at k2 = 0, thus
Fσ = ĥσ(0) = 1. The local πN (σN) interaction can
be obtained by taking λπ(λσ) → ∞. Note that the co-
variant parametrization is used though it leads to a sin-
gularity for the time-like k2. This singularity may not be
consistent with unitarity, however this shortcoming can be
important only at high energies. Note that sometimes in
the OBE models [22] noncovariant parametrizations like
λ2

π/(λ2
π+	k2) are used for the πNN form factor.

Equations (45)-(48) allow one to calculate the γNN
vertex for a general case of the off-mass-shell (bound) nu-
cleon. Here, we restrict ourselves to the free nucleon with
p2
1 = p2

2 = m2
N . The corresponding vertex is (see [11],

chapt. 7, sect. 7.1.3)

ū(p2)Γµ(p2, p1; q)u(p1) =

ū(p2)
[
F1(q2)γµ + i

σµνqν

2mN
F2(q2)

]
u(p1) , (50)

where σµν = i
2 [γµ, γν ], F1(q2) and F2(q2) are the Dirac

and Pauli form factors normalized at the photon point as
follows:

F p
1 (0) = 1 , Fn

1 (0) = 0 , F p
2 (0) = κp , Fn

2 (0) = κn .
(51)

It is convenient to use the Sachs electric and magnetic
form factors [2]

GE(q2) = F1(q2) +
q2

4m2
N

F2(q2) ,

GM (q2) = F1(q2) + F2(q2) , (52)
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in terms of which the electric and magnetic MSRs are
defined as [23]

〈r2
E〉 = 6G′

E(0) = 6
[
F ′

1(0) +
F2(0)
4m2

N

]
,

〈r2
M 〉 =

6
µN

G′
M (0) , (53)

with µN = GM (0) = 1 + κp (κn) for the proton (neutron)
and G′(0) ≡ dG(q2)/dq2 at q2 = 0.

Calculation of the pion- and sigma-loop contributions
to the EM form factors is straightforward but cumbersome
and we refer to Appendix C where details are collected.
Here we only present results for AMMs

κp = −κa +
1
2
κb + κc + κd+ , (54)

κn = κa + κb + κd− , (55)

where

κa = −g2m2
Nλ4

π

4π2l4π

∫ 1

0

{
2
l2π

ln
D(mπ)
D(λπ)

+(1 − α)
[

1
D(mπ)

+
1

D(λπ)

] }
α2dα ,

κb = −g2m2
Nλ4

π

4π2

∫ 1

0

α3(1 − α)2

D(mπ)D(λπ)2
dα ,

κc =
g2m2

Nλ4
σ

8π2

∫ 1

0

α2(2 − α)(1 − α)2

D(mσ)D(λσ)2
dα , (56)

κd+ = −κd− = −g2m2
Nλ4

π

4π2l4π

∫ 1

0

{
2
l2π

ln
D(mπ)
D(λπ)

+(1 − α)
[

3
D(λπ)

− D(mπ)
D(λπ)2

]}
α2dα . (57)

Here l2π,σ ≡ λ2
π,σ − m2

π,σ and

D(mπ,σ) = m2
Nα2 + m2

π,σ(1 − α) ,

D(λπ,σ) = m2
Nα2 + λ2

π,σ(1 − α) . (58)

In the limit λπ,σ → ∞ one reproduces results in the
local σ-model

κa = −g2m2
N

4π2

∫ 1

0

α2(1 − α)
D(mπ)

dα ,

κb = −g2m2
N

4π2

∫ 1

0

α3

D(mπ)
dα ,

κc =
g2m2

N

8π2

∫ 1

0

α2(2 − α)
D(mσ)

dα ,

κd+ = κd− = 0 . (59)

The expressions for the loop contributions 〈r2
E〉π,σ and

〈r2
M 〉π,σ to the nucleon electric and magnetic MSRs are

given in Appendix C.

3.2 Vector-meson contributions to the electromagnetic
vertex

We add the following Lagrangian density [7] corresponding
to the vector mesons

Lω,ρ(x) =
∑

V =ω,ρ

{
− gV NN N̄

(
γµVµ +

κV

4mN
σµνVµν

)

×IV N− e

2gV γ
FµνVµν +

1
2
m2

V V µVµ− 1
4
V µνVµν

}
, (60)

where V µ stands for the ωµ or ρ µ, gV NN is the (vector)
coupling constant of the meson-nucleon interaction, κV

is the ratio of tensor and vector couplings, gV γ is the
photon-meson coupling constant, and the isospin factor
IV = 1 (τ3) for the ω (ρ). Only the neutral ρ0-meson is
included as it couples to the photon. Furthermore, Fµν =
∂µAν − ∂νAµ is the EM tensor and Vµν = ∂µVν − ∂νVµ.
The ρ−ω mixing is neglected. This Lagrangian gives rise
to the nucleon EM vertex (fig. 1, diagrams “e”)

Γµ(p2, p1; q)ω,ρ =
gωNN

gωγ

q2

m2
ω − q2 − imωΓω(q2)

(̃
γµ+i

σµνqν

2mN
κω

)

+τ3
gρNN

gργ

q2

m2
ρ − q2 − imρΓρ(q2)

(̃
γµ+i

σµνqν

2mN
κρ

)
. (61)

To avoid problems with the gauge invariance for the off-
mass-shell nucleons, one can introduce [7] γ̃µ ≡ γµ −
q/qµ/q2 (there is no pole for real photons due to the q2

factor in eq. (61)). This modification is however irrelevant
for the on-shell nucleons since the additional term does
not contribute. The decay widths of the mesons, Γω(q2)
and Γρ(q2), can be omitted for the photon space-like mo-
menta.

The contributions from the vector mesons to the EM
form factors read

F1(q2)ω,ρ = q2

(
Gω

m2
ω − q2

± Gρ

m2
ρ − q2

)
,

F2(q2)ω,ρ = q2

(
Gωκω

m2
ω − q2

± Gρκρ

m2
ρ − q2

)
, (62)

where “plus” stands for the proton, “minus” for the neu-
tron, and GV ≡ gV NN/gV γ . The form factors including
all the diagrams in fig. 1 are

F p
l (q2) = δl1 + F p

l (q2)π,σ + F p
l (q2)ω,ρ ,

Fn
l (q2) = Fn

l (q2)π,σ + Fn
l (q2)ω,ρ , (63)

where l = 1, 2 and Fl(q2)π,σ are given in eqs. (C.10). There
is no contribution from the vector mesons to the nucleon
magnetic moment, whereas they contribute to the radii.
From eqs. (62) and (53) one finds the corresponding elec-
tric and magnetic MSRs

〈r2
E〉ω,ρ = 6

(
Gω

m2
ω

± Gρ

m2
ρ

)
,

〈r2
M 〉ω,ρ =

6
µN

[
Gω(1 + κω)

m2
ω

± Gρ(1 + κρ)
m2

ρ

]
. (64)
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Table 1. Vector-meson coupling parameters, ratios GV = gV NN/gV γ , and the corresponding electric/magnetic mean-square
radii R2

E/M ≡ 〈r2
E/M 〉ω,ρ (in fm2) of the proton and neutron.

Reference gρNN (κρ) Gρ gωNN (κω) Gω R2
Ep R2

Mp R2
En R2

Mn

Universality + SU(3) 1
2
gργ (3.7) 1

2
1
2
gωγ (0.0) 1

2
0.39 0.40 −0.01 0.39

Effective Lagrangian [25] 2.66 (3.7) 0.52 7.98 (0.0) 0.47 0.39 0.42 −0.03 0.42

Effective Lagrangian [26] 2.07 (3.01) 0.41 7.98 (−0.12) 0.47 0.34 0.29 0.02 0.26

Bonn OBEP [22] 2.66 (3.7) 0.52 15.85 (0.0) 0.93 0.56 0.48 0.15 0.33

The meson-photon couplings are fixed from the ω →
e+e− and ρ → e+e− decay widths [24]: gργ = 5.03 and
gωγ = 17.05. These values approximately follow the SU(3)
pattern gωγ/gργ = 3. The typical meson-nucleon couplings
are collected in table 1. The values shown in the second
row correspond to the so-called universality of Sakurai
(see [12], chapt. 5, sect. 4) and the SU(3) symmetry. The
universality requires 2gρNN = gργ = γρ, where γρ is a
universal coupling constant of the ρ to any particle, and
the SU(3) gives [24]: gωγ = 3gργ and gωNN = 3gρNN .
We can use this approximation for an estimate. Assuming
equal masses mρ = mω = mV = 770 MeV we get the radii
squared induced by the vector mesons

〈r2
E〉ω,ρ =

6
m2

V

≈ 0.39 fm2 ,

〈r2
M 〉ω,ρ =

6
m2

V (1 + κp)

(
1 +

κω + κρ

2

)
≈ 0.40 fm2 (65)

for the proton, and

〈r2
E〉ω,ρ = 0 ,

〈r2
M 〉ω,ρ =

6
m2

V κn

(
κω − κρ

2

)
≈ 0.38 fm2 (66)

for the neutron (values κρ = 3.7, κω = 0.0 have been
used). According to this estimate the ω and ρ give rise to
almost equal magnetic radii of the proton and neutron,
as well as the electric radius of the proton, though the
values are well below the experiment. In table 1 the MSRs
〈r2

E/M 〉
ω,ρ

calculated with the other values of the ρN and
ωN coupling constants and physical masses of the mesons
are also presented. As it is seen, the MSRs depend on the
coupling constants, although the variations of the radius
RE or RM do not exceed 20% (except R2

En).
Adding the contribution from the σ- and π-meson

loops, we obtain the total MSRs

〈r2
E/M 〉 = 〈r2

E/M 〉π,σ + 〈r2
E/M 〉ω,ρ, (67)

for the proton and neutron. The calculated radii are com-
pared with experiment in sect. 4.

3.3 Renormalization

In general, the γNN vertex needs a renormalization in
accordance with: Γµ

R(p2, p1; q) = Z1Γ
µ(p2, p1; q), where

Z1 is vertex renormalization constant (see [11], chapt. 7,
sect. 7.1.3). The renormalized vertex (subscript “R”
stands for renormalized quantities) obeys the condition
at p2 → p1: ū(p1)Γ

µ
R(p1, p1; 0)u(p1) = ū(p1)Q̂pγ

µu(p1).
Substituting the on-mass-shell vertex (50) in this equa-
tion yields Z1 = 1/F p

1 (0), where F p
1 (0) is the unrenor-

malized proton form factor at q2 = 0. Correspondingly,
one has F1,2(q2)R = F1,2(q2)/F p

1 (0). In literature the two
different renormalization schemes have been discussed: the
subtractive and the multiplicative ones. In the subtractive
scheme [1,2,4,27] one expands 1/F p

1 (0) in powers of g and
retains terms of the order g2 in the one-loop calculation.
In the multiplicative scheme [5,7] no expansion is used. In
table 2 the renormalization rules in the two schemes are
compared.

As is seen from table 2, the renormalized AMM κR and
the MSR for the Dirac form factor 〈r2

1〉R can be essentially
different in the two schemes if Z1 differs considerably from
unity. Such a situation occurs in many calculations, e.g.,
in [2,5,7] where Z1 is 0.3–0.4 or less. In the calculation
below, we follow the subtractive scheme as it consistently
takes into account terms of the same order. On the oppo-
site, in the multiplicative scheme some terms of the higher
orders may be artificially generated.

One test of the model is the vanishing of the neutron
form factor Fn

1 (q2) at q2 = 0. This condition is fulfilled
in our calculation with the accuracy of 10−6. An impor-
tant test of the gauge invariance is the fulfillment of the
equation Z1 = Z2, where Z2 is the wave function renor-
malization constant. The latter is calculated from the nu-
cleon self-energy in Appendix C. The equation Z1 = Z2 is
rather well satisfied in the numerical calculation.

4 Results of calculation and discussion

There are several parameters in the model: λπ, λσ and
mσ. There is also an ambiguity in the value of g which,
in the local σ-model, was pointed out in [9]. In view
of a sensitivity of AMMs to g this issue deserves at-
tention. In the σ-model the formula mN = gfπ is the
Goldberger-Treiman relation rAmN = gfπ with the ax-
ial coupling constant rA equal to unity (see [12], chapt.
5, sect. 2.5). The corresponding meson-nucleon coupling
constant g comes out rather small, namely g = 10.2. How-
ever, it is known that renormalization of the axial coupling
leads to the value rexp

A = 1.2573(28), which increases g
to 12.8. The latter number is close to the physical πN
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Table 2. Renormalized EM form factors F1,2(q
2)R, anoma-

lous magnetic moment κR = F2(0)R, and mean-square radii
〈r2

1〉R = 6F ′
1(0)R, 〈r2

2〉R = 6F ′
2(0)R/F2(0)R in the subtractive

and multiplicative schemes (formulas for AMM and MSRs are
valid for the proton and neutron).

Subtractive Multiplicative

F p
1 (q2)R = F p

1 (q2) − F p
1 (0) + 1 F p

1 (q2)R = Z1F
p
1 (q2)

F n
1 (q2)R = F n

1 (q2) F n
1 (q2)R = Z1F

n
1 (q2)

F
p/n
2 (q2)R = F

p/n
2 (q2) F

p/n
2 (q2)R = Z1F

p/n
2 (q2)

κR = F2(0) κR = Z1F2(0)

〈r2
1〉R = 6F ′

1(0) 〈r2
1〉R = 6Z1F

′
1(0)

〈r2
2〉R = 6F ′

2(0)/F2(0) 〈r2
2〉R = 6F ′

2(0)/F2(0)

coupling constant gπNN = 13.01, which follows from the
modern value [17] f2

πNN/4π = 0.0745(6) through the rela-
tion gπNN/2mN = fπNN/mπ. The physical value is used
in the calculation below.

The pion cut-off momentum λπ can be fixed from the
neutron AMM because the latter does not depend on the
sigma parameters. In fig. 2 (upper panel) the neutron
AMM is shown as a function of λπ. As it is seen, the exper-
imental AMM is reproduced with λπ = 1.56 GeV. In the
local theory (λπ → ∞) κn turns out to be −3.52 which is
too big. We note that the seagull term κd− is important,
it contributes about 15% to AMM at λπ = 1.56 GeV.

Having fixed the pion cut-off, we calculate the proton
AMM as a function of mσ (fig. 2, lower panel). In the
figure λσ → ∞ is chosen. As it is seen, the agreement with
experiment is observed for mσ = 915 MeV. If we choose
λσ equal to λπ then the σ mass decreases to 290 MeV. The
results for AMMs and radii are presented in table 3. In the
calculation of MSRs we used the ωN and ρN couplings
from table 1 (parameters from the third row corresponding
to an effective Lagrangian from [25]).

The following comments regarding AMMs are in or-
der. First, in the local σ-model (second row in table 3)
there is no agreement with experiment for any value of
mσ. It is possible to get the proton AMM correct (with
mσ ≈ 700 MeV), however it is not possible to get both
the proton and neutron AMMs correct at the same time.
This observation was one of the motivations for a nonlocal
extension of the σ-model.

Second, the variant with λσ = λπ corresponds to the
chiral-symmetrical case. It requires however too low σ-
meson mass that does not look realistic.

Third, the set of parameters λπ = 1.56 GeV and
λσ → ∞ (third row in table 3) implies that the σN
interaction is local, as could be expected for a heavy
meson. The σ-meson can be viewed as an approxima-
tion to various scalar-isoscalar exchanges (e.g., two-pion,
f0(400–1200) or f0(980) [28]). The light pion interacts
with the nucleon via a nonlocal Lagrangian; the size of
the nonlocality in configuration space is about 〈r2

πN 〉1/2 =
(6dĥπ(k)/dk2|k2=0)1/2 =

√
6λ−1

π ≈ 0.31 fm.
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Fig. 2. Upper panel: the neutron anomalous magnetic moment
as a function of the pion cut-off momentum. Lower panel: the
proton anomalous magnetic moment vs. the mass of the σ-
meson. Experimental values are indicated by the open squares.
Various contributions in eqs. (54) and (55) corresponding to
the diagrams “a, b, c” and “d±” in fig. 1 are also shown.

As for the electric and magnetic radii, their sensitiv-
ity to the π and σ cut-off parameters is not very strong
(compare numbers for R2

E or R2
M within a column in ta-

ble 3). For definiteness, we discuss the calculation with
λπ = 1.56 GeV, λσ → ∞ and mσ = 915 MeV. In ta-
ble 4 the contributions from which the MSRs are formed
are shown separately. It is seen that among the π- and
σ-loop terms the dominant contribution to the electric
radius comes from the diagram “a” in fig. 1, where the
photon couples to the virtual pion. The σ loop is also
essential for the proton and contributes about 30%, the
seagull diagrams “d+, d−” bring in 〈r2

E〉π,σ about 10%. In
the magnetic radius the diagrams “a, b, c” (in fig. 1) for
the proton, and “a, b” for the neutron are equally impor-
tant. It is worth mentioning that 〈r2

E〉π,σ is a sum of the
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Table 3. Pion- and sigma-meson cut-off parameters, mass of the σ, proton and neutron anomalous magnetic moments (in
nuclear magnetons), total electric/magnetic mean-square radii R2

E/M ≡ 〈r2
E/M 〉 (in fm2). Experimental values for AMMs are

taken from [28], for MSRs from [23].

λπ (GeV) λσ (GeV) mσ (MeV) κp κn R2
Ep R2

Mp R2
En R2

Mn

∞ ∞ 915 1.57 −3.52 0.82 0.68 −0.34 0.57

1.56 ∞ 915 1.793 −1.913 0.78 0.65 −0.28 0.70

1.56 1.56 290 1.793 −1.913 0.82 0.67 −0.29 0.70

Experiment 1.792847337 −1.91304272 0.74 0.74 −0.119 0.77

Table 4. Contributions to the electric and magnetic mean-square radii from the diagrams in fig. 1. The parameters are:
λπ = 1.56 GeV, λσ → ∞ and mσ = 915 MeV for the π-, σ-mesons, and gωNN (κω) = 7.98 (0.0), gρNN (κρ) = 2.66 (3.7) for
the ω-, ρ-mesons.

〈r2〉 (fm2) π, σ loops π, σ loops + VMD Experiment [23]

a a + b a + b + c a + b + c + d a + b + c + d + e

R2
Ep 0.24 0.24 0.37 0.39 0.78 0.74 ± 0.02

R2
Mp 0.29 0.38 0.25 0.23 0.65 0.74 ± 0.11

R2
En −0.24 −0.23 −0.23 −0.26 −0.28 −0.119 ± 0.004

R2
Mn 0.64 0.32 0.32 0.28 0.70 0.77 ± 0.13

contributions from the diagrams “a”–“d”, while 〈r2
M 〉π,σ

is a more complicated superposition of separate diagrams
because both the numerator and denominator in the def-
inition (53) of the magnetic radius are built up of the
diagrams “a”–“d”. The ω- and ρ-mesons contribute ad-
ditively to the electric and magnetic MSRs (see eq. (67))
for in the chosen VMD model the corresponding EM form
factors (62) vanish at q2 = 0.

It appears that the total loop contributions 〈r2
E/M 〉π,σ

underestimate noticeably the observed MSRs. The vector
mesons improve the agreement with experiment (compare
the last but one and the last columns in table 4). As it
is seen, the electric REp (magnetic RMp) radius of the
proton is described with the accuracy 3% (7%); the mag-
netic radius RMn of the neutron differs from experiment
by about 5%. The negative sign of R2

En is reproduced, but
not the magnitude. Note that this calculation is performed
with the one set of the ρN and ωN coupling constants.
Unfortunately there is a dependence of the radii on these
parameters (cf. table 1).

5 Conclusions

In the paper a nonlocal model for interacting nucleon, π-
and σ-mesons has been developed. It is an extension of
the chiral linear sigma-model and allows for space-time
form functions hπ,σ(x′ − x) describing the πN and σN
interactions. While these interactions are characterized by
one coupling constant g as in the local model, the form
functions can be different. The nonlocality may account
for degrees of freedom not included explicitly in the model.

The conserved electromagnetic current has been ob-
tained in the model via the minimal substitution in the
so-called shift operators. In a similar way the conserved

vector current and partially conserved axial current have
been derived. An important feature of the nonlocal model
is that all these currents get additional contributions from
the meson-nucleon interaction.

The model has been applied in the calculation of
the low-energy electromagnetic properties of the nucleon,
namely the magnetic moment and the electric and mag-
netic mean-square radii. By varying the nonlocality pa-
rameters of the πN and σN interactions (λπ and λσ) and
the sigma mass it turns out possible to fit the magnetic
moments of the proton and neutron. In particular, the
neutron magnetic moment allows one to fix λπ, while the
proton magnetic moment gives at least two options for
the choice of λσ and mσ: a) local σN interaction with
λσ → ∞ and heavy sigma-meson (mσ = 915 MeV), b)
chiral-symmetrical case with λσ = λπ and light sigma-
meson (mσ = 290 MeV). In general, λπ =1.56 GeV sets
the upper limit of energies where the model can be con-
sidered as an effective model.

At the same time the π and σ one-loop contributions
are not sufficient to describe the observed radii. The sit-
uation is improved if the vector-meson contributions are
added. For this purpose we have used the version [7] of
the VMD model in which the photon coupling to the vec-
tor mesons is described by a gauge-invariant Lagrangian.
The radii calculated based on the π, σ and ω, ρ contri-
butions are in satisfactory agreement with experiment for
the proton and neutron.

In future we plan to study other observables in low-
energy nuclear/hadron physics in the framework of this
model.

I would like to thank Prof. S.V. Peletminsky, Dr. V.D. Gershun
and Dr. V.A. Soroka for discussions.
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Appendix A. Equations of motion in the
nonlocal model

The variational principle applied to eqs. (1) and (11), un-
der the condition that variations of the fields vanish on the
boundaries of the integration region, leads to the equations
of motion

i∂/N(x) − g

∫
[φ(x′)hσ(x − x′)

+ iγ5	τ	π(x′)hπ(x − x′)]dx′N(x) = 0 ,

N̄(x)i
←−
∂/ + gN̄(x)

∫
[φ(x′)hσ(x − x′)

+ iγ5	τ	π(x′)hπ(x − x′)]dx′ = 0 ,

�	π(x) + g	̃ρA(x) + λ	π(x)[φ(x)2 + 	π(x)2 − ξ2] = 0 ,

�φ(x) + gρ̃S(x) +λφ(x)[φ(x)2 + 	π(x)2 − ξ2] − c = 0 ,

with � = ∂µ∂µ. The derivation of these equations pro-
ceeds similarly to that in the ψ̄ψφ model of Kristensen
and Møller [15]. After substitutions φ(x) = fπ + σ(x),
c = fπm2

π and ξ2 = f2
π − m2

π/λ (see sect. 2) in these
equations the mass terms for the nucleon, pion and sigma
appear explicitly.

Appendix B. Ward-Takahashi identity in
one-loop approximation

In this Appendix we check gauge invariance expressed
in terms of the WT identity. The identity reads (see,
e.g., [11], chapt. 7, sect. 7.1.3)

qµΓµ(p2, p1; q) = Q̂p[S′(p2)−1 − S′(p1)−1] =

Q̂p[q/ − Σ(p2) + Σ(p1)] , (B.1)

where Σ(p) is the nucleon self-energy operator. In the or-
der g2 the latter can be written as

Σ(p) = Σπ(p) + Σσ(p) =

−3
2
C

∫
ĥπ(k)γ5S(p − k)γ5ĥπ(−k)∆π(k) d4k

+
1
2
C

∫
ĥσ(k)S(p − k)ĥσ(−k)∆σ(k) d4k , (B.2)

where the factor 3 comes from the sum over charge states
of the intermediate pion.

First we check the WT identity for the neutron. One
can use the identities

S(p2−k)q/S(p1−k)=S(p1−k)−S(p2−k) , (B.3)
q · (2k − q)∆π(k)∆π(k−q)=∆π(k−q)−∆π(k) . (B.4)

Contraction of qµ with Γµ
d± is evaluated with the help of

qµ

∫ 1

0

∂

∂kµ
ĥπ(qt + k) dt = ĥπ(k + q) − ĥπ(k) , (B.5)

qµ

∫ 1

0

∂

∂kµ
ĥπ(qt − k) dt = ĥπ(−k) − ĥπ(q − k) . (B.6)

Collecting results for all terms in eq. (44), one obtains the
required identity

qµ(Γµ
a + Γµ

b + Γµ
d−) = 0 .

More care should be taken to verify the WT identity
for the proton as the r.h.s. of eq. (B.1) is not zero. Using
eqs. (B.3)-(B.6), we find

qµ

(
1
2
Γµ

b

)
=

1
3

[Σπ(p1) − Σπ(p2)] ,

qµ(−Γµ
a + Γµ

d+) =
2
3

[Σπ(p1) − Σπ(p2)] ,

qµΓµ
c = Σσ(p1) − Σσ(p2) .

These relations mean that the WT identity for the γpp
vertex holds separately for the contributions generated by
the intermediate π0, π+, and the σ. The sum of the above
equations is the WT identity for the proton in eq. (B.1)
(without the term qµγµ = q/).

Appendix C. Evaluation of loop integrals

It is convenient first to use the relations that follow from
eq. (49):

ĥπ(k)∆π(k) =
λ2

π

l2π

∑
i=1,2

(−1)i+1 1
k2 − m2

i

,

ĥ2
π(k)∆π(k) =

λ4
π

l4π

(
1 − l2π

∂

∂λ2
π

) ∑
i=1,2

(−1)i+1 1
k2 − m2

i

,

where m1 = mπ, m2 = λπ and l2π ≡ λ2
π − m2

π; the similar
formulas hold for the σ-meson. Then all integrands can
be written in terms of products of the three multipliers in
denominators. We apply the Feynman identity

1
ABCn+1

=

Γ (n + 3)
Γ (n + 1)

∫ 1

0

dα1

∫ 1−α1

0

dα2
αn

3

(α1A + α2B + α3C)n+3
,

α3 = 1 − α1 − α2 .

Integration over k is carried out using the dimensional-
regularization method (see, e.g., [29]). The following inte-
grals for arbitrary four-momentum Qµ and scalar R are
used:∫

[1, kα, kαkβ ]
(k2 − 2k · Q + R)n+3

ddk =

iπd/2(−1)n+3

Γ (n + 3)

{
Γ (n + 3 − d/2)

(Q2 − R)n+3−d/2
[1, Qα, QαQβ ]

− Γ (n + 2 − d/2)
2(Q2 − R)n+2−d/2

[0, 0, gαβ ]

}
,

where Γ (z) is the Gamma-function and gαβ is the metric
tensor. While calculating the EM vertex for the on-shell
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nucleon, we can drop terms proportional to qµ and q/, and
make use of the Dirac equation for initial and final states
u(p1) and ū(p2) in eq. (50). The Gordon identity for the
general off-mass-shell case

pµ
1 + pµ

2 = p/2γ
µ + γµp/1 − iσµνqν

is useful while reducing formulas to eq. (50).
In this way, we obtain the following contributions from

the diagram “a” in fig. 1:

F1(q2)a =
g2λ4

π

4π2l4π

×
∑

i,j=1,2

(−1)i+j

∫ 1

0

∫ 1

0

[
m2

Nα2

Dij
− πd/2−2Γ (2 − d/2)

2D2−d/2
ij

]

×(1 − α) dαdβ , (C.1)

F2(q2)a =

−g2m2
Nλ4

π

4π2l4π

∑
i,j=1,2

(−1)i+j

∫ 1

0

∫ 1

0

α2(1 − α)
Dij

dαdβ , (C.2)

Dij = m2
Nα2 + m2

i (1 − α)

+(m2
j − m2

i )(1 − α)β − q2(1 − α)2β(1 − β) .

The contributions in fig. 1 “b” read

F1(q2)b =
g2λ4

π

8π2l4π

(
1 − l2π

∂

∂λ2
π

)

×
∑

i=1,2

(−1)i+1

∫ 1

0

∫ 1

0

[
m2

Nα2 + q2α2β(1 − β)
Di

−πd/2−2Γ (2 − d/2)(2 − d)

2D2−d/2
i

]
α dαdβ , (C.3)

F2(q2)b = −g2m2
Nλ4

π

4π2l4π

(
1 − l2π

∂

∂λ2
π

)

×
∑

i=1,2

(−1)i+1

∫ 1

0

∫ 1

0

α3

Di
dαdβ , (C.4)

Di = m2
Nα2 + m2

i (1 − α) − q2α2β(1 − β) .

Similarly, the σ contribution to the proton form factors is

F1(q2)c =
g2λ4

σ

16π2l4σ

(
1 − l2σ

∂

∂λ2
σ

)

×
∑

i=1,2

(−1)i+1

∫ 1

0

∫ 1

0

[
m2

N (2 − α)2 + q2α2β(1 − β)
Di

−πd/2−2Γ (2 − d/2)(2 − d)

2D2−d/2
i

]
α dαdβ , (C.5)

F2(q2)c =
g2m2

Nλ4
σ

8π2l4σ

(
1 − l2σ

∂

∂λ2
σ

)

×
∑

i=1,2

(−1)i+1

∫ 1

0

∫ 1

0

α2(2 − α)
Di

dαdβ , (C.6)

Di = m2
Nα2 + m2

i (1 − α) − q2α2β(1 − β) .

For the seagull diagram “d+” in fig. 1, we find

F1(q2)d+ = − g2λ4
π

2π2l2π

×
∑

i=1,2

(−1)i+1

∫ 1

0

dt

∫ 1

0

∫ 1

0

(
m2

Nα2

D2
i

− 1
2Di

)

×(1 − α)2β dαdβ , (C.7)

F2(q2)d+ =
g2m2

Nλ4
π

2π2l2π

×
∑

i=1,2

(−1)i+1

∫ 1

0

dt

∫ 1

0

∫ 1

0

α2(1 − α)2β
D2

i

dαdβ , (C.8)

Di = m2
Nα2 + m2

i (1 − α) + (λ2
π − m2

i )
×(1 − α)β + q2t(1 − α)β{α + t[(1 − α)β − 1]} ,

and for the diagram “d−” in fig. 1: F1(q2)d− = −F1(q2)d+,
F2(q2)d− = −F2(q2)d+. In these formulas mi = {mπ, λπ}
for the “a, b” and “d±” form factors, and mi = {mσ, λσ}
for the “c” contribution. The limit d → 4 is implied. The
seemingly divergent terms proportional to Γ (2− d/2) are
in fact finite due to summations over i (or i, j).

In terms of these formulas the one-loop EM form fac-
tors are written as

F p
l (q2)π,σ = −Fl(q2)a +

1
2
Fl(q2)b + Fl(q2)c + Fl(q2)d+ ,

Fn
l (q2)π,σ = Fl(q2)a + Fl(q2)b + Fl(q2)d− , (C.9)

(l = 1, 2) ,

for the proton and neutron. Expressions (54)-(57) of sub-
sect. 3.1 for AMMs follow from eqs. (C.2), (C.4), (C.6)
and (C.8) after putting q2 equal to zero.

In order to calculate the electric and magnetic MSRs
in eqs. (53) we need, in addition to F2(0), the derivatives
F ′

1(0) and G′
M (0). Calculating the derivatives of the form

factors (C.1)-(C.8), we obtain for the pion-loop diagram
“a” in fig. 1:

F ′
1(0)a = − g2λ4

π

8π2l4π

∫ 1

0

∫ 1

0

{
1

D(mπ)
+

1
D(λπ)

− 2
D(mπ) + β(D(λπ) − D(mπ))

− 2m2
Nα2

×
[

1
D(mπ)2

+
1

D(λπ)2

− 2
[D(mπ) + β(D(λπ) − D(mπ))]2

]}

×(1 − α)3β(1 − β) dαdβ ,

G′
M (0)a = − g2λ4

π

8π2l4π

∫ 1

0

∫ 1

0

{
1

D(mπ)
+

1
D(λπ)

− 2
D(mπ) + β(D(λπ) − D(mπ))

}

×(1 − α)3β(1 − β) dαdβ , (C.10)
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for the diagram “b”:

F ′
1(0)b =

g2λ4
π

8π2

1
6

∫ 1

0

{
2 + m2

Nα2

[
1

D(mπ)
+

2
D(λπ)

]}

× α3(1 − α)2

D(mπ)D(λπ)2
dα ,

G′
M (0)b =

g2λ4
π

8π2

1
6

∫ 1

0

{
2 − m2

Nα2

[
1

D(mπ)
+

2
D(λπ)

]}

× α3(1 − α)2

D(mπ)D(λπ)2
dα , (C.11)

for the σ-loop diagram “c”:

F ′
1(0)c =

g2λ4
σ

16π2

1
6

∫ 1

0

{
2 + m2

N (2 − α)2
[

1
D(mσ)

+
2

D(λσ)

]}

× α3(1 − α)2

D(mσ)D(λσ)2
dα ,

G′
M (0)c =

g2λ4
σ

16π2

1
6

∫ 1

0

{
2 + m2

N (4 − α2)
[

1
D(mσ)

+
2

D(λσ)

]}

× α3(1 − α)2

D(mσ)D(λσ)2
dα , (C.12)

and for the seagull diagram “d+”:

F ′
1(0)d+ =

g2λ4
π

4π2l2π

1
6

×
∫ 1

0

∫ 1

0

{
1

D(λπ)2
− 1

[D(mπ) + β(D(λπ) − D(mπ))]2

−4m2
Nα2

[
1

D(λπ)3
− 1

[D(mπ) + β(D(λπ) − D(mπ))]3

]}

×(1 − α)3β2[3α − 2 + 2(1 − α)β] dαdβ ,

G′
M (0)d+ =

g2λ4
π

4π2l2π

1
6

×
∫ 1

0

∫ 1

0

{
1

D(λπ)2
− 1

[D(mπ) + β(D(λπ) − D(mπ))]2

}

×(1 − α)3β2[3α − 2 + 2(1 − α)β] dαdβ . (C.13)

The derivatives corresponding to the diagram “d−”
in fig. 1 are: F ′

1(0)d− = −F ′
1(0)d+ and G′

M (0)d− =
−G′

M (0)d+. The functions D(mπ,σ) and D(λπ,σ) are
defined in eqs. (58). The two-dimensional integrals in
eqs. (C.10) and (C.13) can be further reduced to the one-
dimensional ones after performing analytically the inte-
gration over β.

Finally, to check consistency of the model we need the
wave function renormalization constant Z2. If we write the
nucleon self-energy in eq. (B.2) as

Σ(p) = p/A(p2) + mNB(p2) , (C.14)

then the constant reads

Z2 =
(

1 − ∂Σ(p)
∂p/

|p/=mN

)−1

=

{1−A(m2
N )−2m2

N [A′(m2
N )+B′(m2

N )]}−1, (C.15)

where A′(m2
N ) denotes the derivative dA(p2)/dp2 at p2 =

m2
N , and similarly for B′(m2

N ). Using technique similar to
that for the form factors one finds

A(p2) =
g2

16π2

∫ 1

0

{
3
λ4

π

l4π

[
ln

E(mπ)
E(λπ)

+
l2π(1 − α)
E(λπ)

]

+
λ4

σ

l4σ

[
ln

E(mσ)
E(λσ)

+
l2σ(1 − α)
E(λσ)

]}
(1 − α) dα ,

B(p2) =
g2

16π2

∫ 1

0

{
− 3

λ4
π

l4π

[
ln

E(mπ)
E(λπ)

+
l2π(1 − α)
E(λπ)

]

+
λ4

σ

l4σ

[
ln

E(mσ)
E(λσ)

+
l2σ(1 − α)
E(λσ)

]}
dα , (C.16)

where E(mπ,σ) = D(mπ,σ) + (m2
N − p2)α(1 − α) and

E(λπ,σ) = D(λπ,σ) + (m2
N − p2)α(1 − α). Due to the

WT identity the constant Z2, calculated from eq. (C.15),
is equal to the vertex renormalization constant Z1 from
subsect. 3.3. The latter in the present model is

Z1 =F p
1 (0)−1 =[
1−F1(0)a+

1
2
F1(0)b+F1(0)c+F1(0)d+

]−1

. (C.17)
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